MakeItFrom.com
Menu (ESC)

S32803 Stainless Steel vs. CC490K Brass

S32803 stainless steel belongs to the iron alloys classification, while CC490K brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32803 stainless steel and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
76
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 18
15
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 680
230
Tensile Strength: Yield (Proof), MPa 560
110

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
910
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
16

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.7
2.9
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
28
Resilience: Unit (Modulus of Resilience), kJ/m3 760
54
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
7.3
Strength to Weight: Bending, points 22
9.5
Thermal Diffusivity, mm2/s 4.4
22
Thermal Shock Resistance, points 22
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 28 to 29
0
Copper (Cu), % 0
81 to 86
Iron (Fe), % 62.9 to 67.1
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 3.0 to 4.0
0 to 2.0
Niobium (Nb), % 0.15 to 0.5
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.55
0 to 0.010
Sulfur (S), % 0 to 0.0035
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Zinc (Zn), % 0
7.0 to 9.5