MakeItFrom.com
Menu (ESC)

S32803 Stainless Steel vs. S44535 Stainless Steel

Both S32803 stainless steel and S44535 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common.

For each property being compared, the top bar is S32803 stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 350
210
Poisson's Ratio 0.27
0.27
Rockwell B Hardness 86
77
Shear Modulus, GPa 81
78
Shear Strength, MPa 420
290
Tensile Strength: Ultimate (UTS), MPa 680
450
Tensile Strength: Yield (Proof), MPa 560
290

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 510
450
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.4
Embodied Energy, MJ/kg 53
34
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 36
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 760
200
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 4.4
5.6
Thermal Shock Resistance, points 22
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.015
0 to 0.030
Chromium (Cr), % 28 to 29
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 62.9 to 67.1
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 0.5
0.3 to 0.8
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 3.0 to 4.0
0
Niobium (Nb), % 0.15 to 0.5
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.0035
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2