MakeItFrom.com
Menu (ESC)

S32906 Stainless Steel vs. 5251 Aluminum

S32906 stainless steel belongs to the iron alloys classification, while 5251 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32906 stainless steel and the bottom bar is 5251 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
44 to 79
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 28
2.0 to 19
Fatigue Strength, MPa 460
59 to 110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 550
110 to 160
Tensile Strength: Ultimate (UTS), MPa 850
180 to 280
Tensile Strength: Yield (Proof), MPa 620
67 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.5
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
5.4 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 950
33 to 450
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30
18 to 29
Strength to Weight: Bending, points 26
26 to 35
Thermal Diffusivity, mm2/s 3.6
61
Thermal Shock Resistance, points 23
7.9 to 13

Alloy Composition

Aluminum (Al), % 0
95.5 to 98.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.15
Copper (Cu), % 0 to 0.8
0 to 0.15
Iron (Fe), % 56.6 to 63.6
0 to 0.5
Magnesium (Mg), % 0
1.7 to 2.4
Manganese (Mn), % 0.8 to 1.5
0.1 to 0.5
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15