MakeItFrom.com
Menu (ESC)

S32906 Stainless Steel vs. EN 1.4762 Stainless Steel

Both S32906 stainless steel and EN 1.4762 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32906 stainless steel and the bottom bar is EN 1.4762 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
190
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 28
13
Fatigue Strength, MPa 460
180
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 81
78
Shear Strength, MPa 550
370
Tensile Strength: Ultimate (UTS), MPa 850
620
Tensile Strength: Yield (Proof), MPa 620
310

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 460
440
Maximum Temperature: Mechanical, °C 1100
1150
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 13
17
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 20
12
Density, g/cm3 7.7
7.6
Embodied Carbon, kg CO2/kg material 3.7
2.5
Embodied Energy, MJ/kg 52
37
Embodied Water, L/kg 190
170

Common Calculations

PREN (Pitting Resistance) 41
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
67
Resilience: Unit (Modulus of Resilience), kJ/m3 950
250
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 30
23
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 3.6
4.6
Thermal Shock Resistance, points 23
22

Alloy Composition

Aluminum (Al), % 0
1.2 to 1.7
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 28 to 30
23 to 26
Copper (Cu), % 0 to 0.8
0
Iron (Fe), % 56.6 to 63.6
69.7 to 75.1
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0.7 to 1.4
Sulfur (S), % 0 to 0.030
0 to 0.015