MakeItFrom.com
Menu (ESC)

S32950 Stainless Steel vs. 2036 Aluminum

S32950 stainless steel belongs to the iron alloys classification, while 2036 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32950 stainless steel and the bottom bar is 2036 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17
24
Fatigue Strength, MPa 330
130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 480
210
Tensile Strength: Ultimate (UTS), MPa 780
340
Tensile Strength: Yield (Proof), MPa 550
200

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 17
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 3.4
8.1
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
70
Resilience: Unit (Modulus of Resilience), kJ/m3 730
270
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 28
33
Strength to Weight: Bending, points 24
38
Thermal Diffusivity, mm2/s 4.3
62
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0
94.4 to 97.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0 to 0.1
Copper (Cu), % 0
2.2 to 3.0
Iron (Fe), % 60.3 to 69.4
0 to 0.5
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0 to 2.0
0.1 to 0.4
Molybdenum (Mo), % 1.0 to 2.5
0
Nickel (Ni), % 3.5 to 5.2
0
Nitrogen (N), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15