MakeItFrom.com
Menu (ESC)

S32950 Stainless Steel vs. EN 1.8898 Steel

Both S32950 stainless steel and EN 1.8898 steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32950 stainless steel and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
18
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 480
370
Tensile Strength: Ultimate (UTS), MPa 780
600
Tensile Strength: Yield (Proof), MPa 550
490

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 17
2.2
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.6
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 730
650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 26 to 29
0
Iron (Fe), % 60.3 to 69.4
96.7 to 99.98
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 1.0 to 2.5
0 to 0.2
Nickel (Ni), % 3.5 to 5.2
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.15 to 0.35
0 to 0.025
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12