MakeItFrom.com
Menu (ESC)

S32950 Stainless Steel vs. C67500 Bronze

S32950 stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32950 stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 17
14 to 33
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 80
40
Shear Strength, MPa 480
270 to 350
Tensile Strength: Ultimate (UTS), MPa 780
430 to 580
Tensile Strength: Yield (Proof), MPa 550
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1430
890
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
27

Otherwise Unclassified Properties

Base Metal Price, % relative 17
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 730
130 to 650
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28
15 to 20
Strength to Weight: Bending, points 24
16 to 19
Thermal Diffusivity, mm2/s 4.3
34
Thermal Shock Resistance, points 21
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 60.3 to 69.4
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Molybdenum (Mo), % 1.0 to 2.5
0
Nickel (Ni), % 3.5 to 5.2
0
Nitrogen (N), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5