MakeItFrom.com
Menu (ESC)

S32950 Stainless Steel vs. S30441 Stainless Steel

Both S32950 stainless steel and S30441 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32950 stainless steel and the bottom bar is S30441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
45
Fatigue Strength, MPa 330
210
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 480
400
Tensile Strength: Ultimate (UTS), MPa 780
580
Tensile Strength: Yield (Proof), MPa 550
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 460
460
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
18
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.4
Embodied Energy, MJ/kg 47
50
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 37
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210
Resilience: Unit (Modulus of Resilience), kJ/m3 730
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 4.3
4.0
Thermal Shock Resistance, points 21
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 26 to 29
17.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 60.3 to 69.4
62 to 71.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 2.5
0
Nickel (Ni), % 3.5 to 5.2
8.0 to 10.5
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0.15 to 0.35
0 to 0.1
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.6
1.0 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8