MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. EN AC-43400 Aluminum

S33228 stainless steel belongs to the iron alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
80
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 170
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 570
270
Tensile Strength: Yield (Proof), MPa 210
160

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
600
Melting Onset (Solidus), °C 1360
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.2
7.8
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 220
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 110
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 20
29
Strength to Weight: Bending, points 19
36
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0 to 0.025
86 to 90.8
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 36.5 to 42.3
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 31 to 33
0 to 0.15
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
9.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15