MakeItFrom.com
Menu (ESC)

S33425 Stainless Steel vs. EN AC-21000 Aluminum

S33425 stainless steel belongs to the iron alloys classification, while EN AC-21000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33425 stainless steel and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
100
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 45
6.7
Fatigue Strength, MPa 210
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 580
340
Tensile Strength: Yield (Proof), MPa 230
240

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1430
670
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 27
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 5.1
8.0
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 190
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
21
Resilience: Unit (Modulus of Resilience), kJ/m3 140
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 19
36
Thermal Diffusivity, mm2/s 3.7
49
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
93.4 to 95.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 47.2 to 56.7
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 20 to 23
0 to 0.050
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.15 to 0.6
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1