MakeItFrom.com
Menu (ESC)

S33425 Stainless Steel vs. SAE-AISI 1018 Steel

Both S33425 stainless steel and SAE-AISI 1018 steel are iron alloys. They have 53% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S33425 stainless steel and the bottom bar is SAE-AISI 1018 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
17 to 27
Fatigue Strength, MPa 210
180 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 400
280 to 300
Tensile Strength: Ultimate (UTS), MPa 580
430 to 480
Tensile Strength: Yield (Proof), MPa 230
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
52
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
1.4
Embodied Energy, MJ/kg 71
18
Embodied Water, L/kg 190
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
75 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
150 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
15 to 17
Strength to Weight: Bending, points 19
16 to 17
Thermal Diffusivity, mm2/s 3.7
14
Thermal Shock Resistance, points 13
14 to 15

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0.15 to 0.2
Chromium (Cr), % 21 to 23
0
Iron (Fe), % 47.2 to 56.7
98.8 to 99.25
Manganese (Mn), % 0 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 20 to 23
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0 to 0.050
Titanium (Ti), % 0.15 to 0.6
0