MakeItFrom.com
Menu (ESC)

S33425 Stainless Steel vs. S32205 Stainless Steel

Both S33425 stainless steel and S32205 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S33425 stainless steel and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
28
Fatigue Strength, MPa 210
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 79
80
Shear Strength, MPa 400
480
Tensile Strength: Ultimate (UTS), MPa 580
740
Tensile Strength: Yield (Proof), MPa 230
510

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 500
440
Maximum Temperature: Mechanical, °C 1100
1070
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
3.7
Embodied Energy, MJ/kg 71
50
Embodied Water, L/kg 190
160

Common Calculations

PREN (Pitting Resistance) 30
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 21 to 23
22 to 23
Iron (Fe), % 47.2 to 56.7
63.7 to 70.4
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
3.0 to 3.5
Nickel (Ni), % 20 to 23
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0.15 to 0.6
0