MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. 6063A Aluminum

S33550 stainless steel belongs to the iron alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 40
6.7 to 18
Fatigue Strength, MPa 270
53 to 80
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
78 to 150
Tensile Strength: Ultimate (UTS), MPa 680
130 to 260
Tensile Strength: Yield (Proof), MPa 310
55 to 200

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1360
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
200
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
49 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.3
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
13 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 250
22 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
13 to 26
Strength to Weight: Bending, points 22
21 to 33
Thermal Diffusivity, mm2/s 3.9
83
Thermal Shock Resistance, points 15
5.6 to 11

Alloy Composition

Aluminum (Al), % 0
97.5 to 99
Carbon (C), % 0.040 to 0.1
0
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 48.8 to 58.2
0.15 to 0.35
Lanthanum (La), % 0.025 to 0.070
0
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 1.5
0 to 0.15
Nickel (Ni), % 16.5 to 20
0
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15