MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. EN 1.4310 Stainless Steel

Both S33550 stainless steel and EN 1.4310 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
14 to 45
Fatigue Strength, MPa 270
240 to 330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 470
510 to 550
Tensile Strength: Ultimate (UTS), MPa 680
730 to 900
Tensile Strength: Yield (Proof), MPa 310
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 470
410
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.3
2.9
Embodied Energy, MJ/kg 61
42
Embodied Water, L/kg 190
140

Common Calculations

PREN (Pitting Resistance) 30
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 250
170 to 830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
26 to 32
Strength to Weight: Bending, points 22
23 to 27
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 15
15 to 18

Alloy Composition

Carbon (C), % 0.040 to 0.1
0.050 to 0.15
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
16 to 19
Iron (Fe), % 48.8 to 58.2
66.4 to 78
Lanthanum (La), % 0.025 to 0.070
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 16.5 to 20
6.0 to 9.5
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015