MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. EN 1.4606 Stainless Steel

Both S33550 stainless steel and EN 1.4606 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
23 to 39
Fatigue Strength, MPa 270
240 to 420
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
75
Shear Strength, MPa 470
410 to 640
Tensile Strength: Ultimate (UTS), MPa 680
600 to 1020
Tensile Strength: Yield (Proof), MPa 310
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 470
770
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.3
6.0
Embodied Energy, MJ/kg 61
87
Embodied Water, L/kg 190
170

Common Calculations

PREN (Pitting Resistance) 30
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 250
200 to 1010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
21 to 36
Strength to Weight: Bending, points 22
20 to 28
Thermal Diffusivity, mm2/s 3.9
3.7
Thermal Shock Resistance, points 15
21 to 35

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.040 to 0.1
0 to 0.080
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
13 to 16
Iron (Fe), % 48.8 to 58.2
49.2 to 59
Lanthanum (La), % 0.025 to 0.070
0
Manganese (Mn), % 0 to 1.5
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 16.5 to 20
24 to 27
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5