MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. C34200 Brass

S33550 stainless steel belongs to the iron alloys classification, while C34200 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is C34200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
3.0 to 17
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 82
53 to 91
Shear Modulus, GPa 79
40
Shear Strength, MPa 470
230 to 360
Tensile Strength: Ultimate (UTS), MPa 680
370 to 650
Tensile Strength: Yield (Proof), MPa 310
150 to 420

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1400
910
Melting Onset (Solidus), °C 1360
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 61
45
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
9.0 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110 to 870
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
13 to 22
Strength to Weight: Bending, points 22
14 to 20
Thermal Diffusivity, mm2/s 3.9
37
Thermal Shock Resistance, points 15
12 to 22

Alloy Composition

Carbon (C), % 0.040 to 0.1
0
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 48.8 to 58.2
0 to 0.1
Lanthanum (La), % 0.025 to 0.070
0
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 16.5 to 20
0
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4