MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. C61300 Bronze

S33550 stainless steel belongs to the iron alloys classification, while C61300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
34 to 40
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 470
370 to 390
Tensile Strength: Ultimate (UTS), MPa 680
550 to 580
Tensile Strength: Yield (Proof), MPa 310
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1400
1050
Melting Onset (Solidus), °C 1360
1040
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 15
55
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 4.3
3.0
Embodied Energy, MJ/kg 61
49
Embodied Water, L/kg 190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 250
230 to 410
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
18 to 19
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.9
15
Thermal Shock Resistance, points 15
19 to 20

Alloy Composition

Aluminum (Al), % 0
6.0 to 7.5
Carbon (C), % 0.040 to 0.1
0
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
88 to 91.8
Iron (Fe), % 48.8 to 58.2
2.0 to 3.0
Lanthanum (La), % 0.025 to 0.070
0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 0.2
Nickel (Ni), % 16.5 to 20
0 to 0.15
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.2 to 0.5
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2