MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. S32050 Stainless Steel

Both S33550 stainless steel and S32050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 40
46
Fatigue Strength, MPa 270
340
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
81
Shear Strength, MPa 470
540
Tensile Strength: Ultimate (UTS), MPa 680
770
Tensile Strength: Yield (Proof), MPa 310
370

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 470
440
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.3
6.0
Embodied Energy, MJ/kg 61
81
Embodied Water, L/kg 190
210

Common Calculations

PREN (Pitting Resistance) 30
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
290
Resilience: Unit (Modulus of Resilience), kJ/m3 250
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 3.9
3.3
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
22 to 24
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 48.8 to 58.2
43.1 to 51.8
Lanthanum (La), % 0.025 to 0.070
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 16.5 to 20
20 to 23
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0.21 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020