MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. S40975 Stainless Steel

Both S33550 stainless steel and S40975 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 66% of their average alloy composition in common.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
22
Fatigue Strength, MPa 270
210
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 82
81
Shear Modulus, GPa 79
75
Shear Strength, MPa 470
290
Tensile Strength: Ultimate (UTS), MPa 680
460
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 470
450
Maximum Temperature: Mechanical, °C 1100
710
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.3
2.0
Embodied Energy, MJ/kg 61
28
Embodied Water, L/kg 190
95

Common Calculations

PREN (Pitting Resistance) 30
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
93
Resilience: Unit (Modulus of Resilience), kJ/m3 250
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.9
7.0
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
10.5 to 11.7
Iron (Fe), % 48.8 to 58.2
84.4 to 89
Lanthanum (La), % 0.025 to 0.070
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 16.5 to 20
0.5 to 1.0
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.75