MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. S82122 Stainless Steel

Both S33550 stainless steel and S82122 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 270
360
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 470
460
Tensile Strength: Ultimate (UTS), MPa 680
680
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 470
430
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 61
37
Embodied Water, L/kg 190
150

Common Calculations

PREN (Pitting Resistance) 30
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
210
Resilience: Unit (Modulus of Resilience), kJ/m3 250
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
20.5 to 21.5
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 48.8 to 58.2
68.9 to 75.4
Lanthanum (La), % 0.025 to 0.070
0
Manganese (Mn), % 0 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 16.5 to 20
1.5 to 2.5
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0.15 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.020