MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. 2017A Aluminum

S34565 stainless steel belongs to the iron alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 39
2.2 to 14
Fatigue Strength, MPa 400
92 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 610
120 to 270
Tensile Strength: Ultimate (UTS), MPa 900
200 to 460
Tensile Strength: Yield (Proof), MPa 470
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 5.3
8.2
Embodied Energy, MJ/kg 73
150
Embodied Water, L/kg 210
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 540
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 32
19 to 42
Strength to Weight: Bending, points 26
26 to 44
Thermal Diffusivity, mm2/s 3.2
56
Thermal Shock Resistance, points 22
8.9 to 20

Alloy Composition

Aluminum (Al), % 0
91.3 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 43.2 to 51.6
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 5.0 to 7.0
0.4 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15