MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. 5454 Aluminum

S34565 stainless steel belongs to the iron alloys classification, while 5454 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
61 to 93
Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 39
2.3 to 18
Fatigue Strength, MPa 400
83 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 610
140 to 200
Tensile Strength: Ultimate (UTS), MPa 900
230 to 350
Tensile Strength: Yield (Proof), MPa 470
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.3
8.6
Embodied Energy, MJ/kg 73
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 540
68 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32
23 to 36
Strength to Weight: Bending, points 26
30 to 41
Thermal Diffusivity, mm2/s 3.2
55
Thermal Shock Resistance, points 22
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 43.2 to 51.6
0 to 0.4
Magnesium (Mg), % 0
2.4 to 3.0
Manganese (Mn), % 5.0 to 7.0
0.5 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15