MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. 6008 Aluminum

S34565 stainless steel belongs to the iron alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 39
9.1 to 17
Fatigue Strength, MPa 400
55 to 88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 610
120 to 170
Tensile Strength: Ultimate (UTS), MPa 900
200 to 290
Tensile Strength: Yield (Proof), MPa 470
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
190
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
160

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.3
8.5
Embodied Energy, MJ/kg 73
160
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 540
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32
21 to 29
Strength to Weight: Bending, points 26
28 to 35
Thermal Diffusivity, mm2/s 3.2
77
Thermal Shock Resistance, points 22
9.0 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 43.2 to 51.6
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 5.0 to 7.0
0 to 0.3
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15