MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. AISI 347 Stainless Steel

Both S34565 stainless steel and AISI 347 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160 to 210
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 39
34 to 46
Fatigue Strength, MPa 400
220 to 270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 610
430 to 460
Tensile Strength: Ultimate (UTS), MPa 900
610 to 690
Tensile Strength: Yield (Proof), MPa 470
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 450
480
Maximum Temperature: Mechanical, °C 1100
870
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.3
3.6
Embodied Energy, MJ/kg 73
52
Embodied Water, L/kg 210
150

Common Calculations

PREN (Pitting Resistance) 47
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 540
150 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
22 to 25
Strength to Weight: Bending, points 26
20 to 22
Thermal Diffusivity, mm2/s 3.2
4.3
Thermal Shock Resistance, points 22
13 to 15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 25
17 to 19
Iron (Fe), % 43.2 to 51.6
64.1 to 74
Manganese (Mn), % 5.0 to 7.0
0 to 2.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
9.0 to 13
Niobium (Nb), % 0 to 0.1
0 to 1.0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030