MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. AISI 441 Stainless Steel

Both S34565 stainless steel and AISI 441 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 68% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 39
23
Fatigue Strength, MPa 400
180
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 88
77
Shear Modulus, GPa 80
77
Shear Strength, MPa 610
300
Tensile Strength: Ultimate (UTS), MPa 900
470
Tensile Strength: Yield (Proof), MPa 470
270

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 450
550
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
23
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 5.3
2.8
Embodied Energy, MJ/kg 73
41
Embodied Water, L/kg 210
130

Common Calculations

PREN (Pitting Resistance) 47
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
92
Resilience: Unit (Modulus of Resilience), kJ/m3 540
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 3.2
6.1
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 23 to 25
17.5 to 19.5
Iron (Fe), % 43.2 to 51.6
76 to 82.2
Manganese (Mn), % 5.0 to 7.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0 to 1.0
Niobium (Nb), % 0 to 0.1
0.3 to 0.9
Nitrogen (N), % 0.4 to 0.6
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5