MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. B535.0 Aluminum

S34565 stainless steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
65
Elastic (Young's, Tensile) Modulus, GPa 210
66
Elongation at Break, % 39
10
Fatigue Strength, MPa 400
62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 610
210
Tensile Strength: Ultimate (UTS), MPa 900
260
Tensile Strength: Yield (Proof), MPa 470
130

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 12
96
Thermal Expansion, µm/m-K 15
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
82

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 5.3
9.4
Embodied Energy, MJ/kg 73
160
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
22
Resilience: Unit (Modulus of Resilience), kJ/m3 540
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 32
28
Strength to Weight: Bending, points 26
35
Thermal Diffusivity, mm2/s 3.2
40
Thermal Shock Resistance, points 22
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 43.2 to 51.6
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 5.0 to 7.0
0 to 0.050
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15