MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. EN 1.0920 Steel

Both S34565 stainless steel and EN 1.0920 steel are iron alloys. They have 49% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is EN 1.0920 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 39
23
Fatigue Strength, MPa 400
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 610
340
Tensile Strength: Ultimate (UTS), MPa 900
540
Tensile Strength: Yield (Proof), MPa 470
380

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
50
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.6
Embodied Energy, MJ/kg 73
22
Embodied Water, L/kg 210
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 22
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 23 to 25
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 43.2 to 51.6
96.1 to 99.08
Manganese (Mn), % 5.0 to 7.0
0.9 to 1.7
Molybdenum (Mo), % 4.0 to 5.0
0 to 0.1
Nickel (Ni), % 16 to 18
0 to 0.5
Niobium (Nb), % 0 to 0.1
0 to 0.050
Nitrogen (N), % 0.4 to 0.6
0 to 0.015
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.12