MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. EN 1.1106 Steel

Both S34565 stainless steel and EN 1.1106 steel are iron alloys. They have 50% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is EN 1.1106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 39
24
Fatigue Strength, MPa 400
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 610
350
Tensile Strength: Ultimate (UTS), MPa 900
550
Tensile Strength: Yield (Proof), MPa 470
370

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
50
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.6
Embodied Energy, MJ/kg 73
22
Embodied Water, L/kg 210
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
120
Resilience: Unit (Modulus of Resilience), kJ/m3 540
360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 22
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.18
Chromium (Cr), % 23 to 25
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 43.2 to 51.6
96.2 to 98.9
Manganese (Mn), % 5.0 to 7.0
1.1 to 1.7
Molybdenum (Mo), % 4.0 to 5.0
0 to 0.080
Nickel (Ni), % 16 to 18
0 to 0.5
Niobium (Nb), % 0 to 0.1
0 to 0.050
Nitrogen (N), % 0.4 to 0.6
0 to 0.012
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1