MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. EN 1.4525 Stainless Steel

Both S34565 stainless steel and EN 1.4525 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 39
5.6 to 13
Fatigue Strength, MPa 400
480 to 540
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
76
Tensile Strength: Ultimate (UTS), MPa 900
1030 to 1250
Tensile Strength: Yield (Proof), MPa 470
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 450
430
Maximum Temperature: Mechanical, °C 1100
860
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
18
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.3
2.8
Embodied Energy, MJ/kg 73
39
Embodied Water, L/kg 210
130

Common Calculations

PREN (Pitting Resistance) 47
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 540
1820 to 3230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
36 to 45
Strength to Weight: Bending, points 26
29 to 33
Thermal Diffusivity, mm2/s 3.2
4.7
Thermal Shock Resistance, points 22
34 to 41

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 23 to 25
15 to 17
Copper (Cu), % 0
2.5 to 4.0
Iron (Fe), % 43.2 to 51.6
70.4 to 79
Manganese (Mn), % 5.0 to 7.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0 to 0.8
Nickel (Ni), % 16 to 18
3.5 to 5.5
Niobium (Nb), % 0 to 0.1
0 to 0.35
Nitrogen (N), % 0.4 to 0.6
0 to 0.050
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.025