MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. EN 1.5525 Steel

Both S34565 stainless steel and EN 1.5525 steel are iron alloys. They have 49% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 39
11 to 21
Fatigue Strength, MPa 400
210 to 310
Poisson's Ratio 0.28
0.29
Reduction in Area, % 45
62 to 73
Shear Modulus, GPa 80
73
Shear Strength, MPa 610
310 to 350
Tensile Strength: Ultimate (UTS), MPa 900
440 to 1440
Tensile Strength: Yield (Proof), MPa 470
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
50
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.4
Embodied Energy, MJ/kg 73
19
Embodied Water, L/kg 210
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 540
240 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
16 to 51
Strength to Weight: Bending, points 26
16 to 36
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 22
13 to 42

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.030
0.18 to 0.23
Chromium (Cr), % 23 to 25
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 43.2 to 51.6
97.7 to 98.9
Manganese (Mn), % 5.0 to 7.0
0.9 to 1.2
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.025