MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. Grade 19 Titanium

S34565 stainless steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 39
5.6 to 17
Fatigue Strength, MPa 400
550 to 620
Poisson's Ratio 0.28
0.32
Reduction in Area, % 45
22
Shear Modulus, GPa 80
47
Shear Strength, MPa 610
550 to 750
Tensile Strength: Ultimate (UTS), MPa 900
890 to 1300
Tensile Strength: Yield (Proof), MPa 470
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1600
Specific Heat Capacity, J/kg-K 470
520
Thermal Conductivity, W/m-K 12
6.2
Thermal Expansion, µm/m-K 15
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
45
Density, g/cm3 7.9
5.0
Embodied Carbon, kg CO2/kg material 5.3
47
Embodied Energy, MJ/kg 73
760
Embodied Water, L/kg 210
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 540
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
33
Strength to Weight: Axial, points 32
49 to 72
Strength to Weight: Bending, points 26
41 to 53
Thermal Diffusivity, mm2/s 3.2
2.4
Thermal Shock Resistance, points 22
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 23 to 25
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 43.2 to 51.6
0 to 0.3
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
3.5 to 4.5
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4