MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. Titanium 6-6-2

S34565 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 39
6.7 to 9.0
Fatigue Strength, MPa 400
590 to 670
Poisson's Ratio 0.28
0.32
Reduction in Area, % 45
17 to 23
Shear Modulus, GPa 80
44
Shear Strength, MPa 610
670 to 800
Tensile Strength: Ultimate (UTS), MPa 900
1140 to 1370
Tensile Strength: Yield (Proof), MPa 470
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 12
5.5
Thermal Expansion, µm/m-K 15
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
40
Density, g/cm3 7.9
4.8
Embodied Carbon, kg CO2/kg material 5.3
29
Embodied Energy, MJ/kg 73
470
Embodied Water, L/kg 210
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 32
66 to 79
Strength to Weight: Bending, points 26
50 to 57
Thermal Diffusivity, mm2/s 3.2
2.1
Thermal Shock Resistance, points 22
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 43.2 to 51.6
0.35 to 1.0
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
5.0 to 6.0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4