MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. C17510 Copper

S34565 stainless steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 39
5.4 to 37
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 88
44 to 99
Shear Modulus, GPa 80
44
Shear Strength, MPa 610
210 to 500
Tensile Strength: Ultimate (UTS), MPa 900
310 to 860
Tensile Strength: Yield (Proof), MPa 470
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1420
1070
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
210
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 28
49
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 5.3
4.2
Embodied Energy, MJ/kg 73
65
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 540
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32
9.7 to 27
Strength to Weight: Bending, points 26
11 to 23
Thermal Diffusivity, mm2/s 3.2
60
Thermal Shock Resistance, points 22
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Iron (Fe), % 43.2 to 51.6
0 to 0.1
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
1.4 to 2.2
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Residuals, % 0
0 to 0.5