MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. C40500 Penny Bronze

S34565 stainless steel belongs to the iron alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 39
3.0 to 49
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 88
46 to 82
Shear Modulus, GPa 80
43
Shear Strength, MPa 610
210 to 310
Tensile Strength: Ultimate (UTS), MPa 900
270 to 540
Tensile Strength: Yield (Proof), MPa 470
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
42

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 5.3
2.7
Embodied Energy, MJ/kg 73
43
Embodied Water, L/kg 210
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
28 to 1200
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32
8.5 to 17
Strength to Weight: Bending, points 26
10 to 17
Thermal Diffusivity, mm2/s 3.2
48
Thermal Shock Resistance, points 22
9.5 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
94 to 96
Iron (Fe), % 43.2 to 51.6
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5