MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. C61000 Bronze

S34565 stainless steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 39
29 to 50
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 88
60 to 85
Shear Modulus, GPa 80
42
Shear Strength, MPa 610
280 to 300
Tensile Strength: Ultimate (UTS), MPa 900
390 to 460
Tensile Strength: Yield (Proof), MPa 470
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 12
69
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 5.3
3.0
Embodied Energy, MJ/kg 73
49
Embodied Water, L/kg 210
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 540
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
13 to 15
Strength to Weight: Bending, points 26
14 to 16
Thermal Diffusivity, mm2/s 3.2
19
Thermal Shock Resistance, points 22
14 to 16

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
90.2 to 94
Iron (Fe), % 43.2 to 51.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5