MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. C99300 Copper

S34565 stainless steel belongs to the iron alloys classification, while C99300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200
Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 39
2.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
46
Tensile Strength: Ultimate (UTS), MPa 900
660
Tensile Strength: Yield (Proof), MPa 470
380

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
250
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1070
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 12
43
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
35
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 5.3
4.5
Embodied Energy, MJ/kg 73
70
Embodied Water, L/kg 210
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
11
Resilience: Unit (Modulus of Resilience), kJ/m3 540
590
Stiffness to Weight: Axial, points 14
8.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 3.2
12
Thermal Shock Resistance, points 22
22

Alloy Composition

Aluminum (Al), % 0
10.7 to 11.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 0
68.6 to 74.4
Iron (Fe), % 43.2 to 51.6
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
13.5 to 16.5
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.020
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Residuals, % 0
0 to 0.3