MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. C99750 Brass

S34565 stainless steel belongs to the iron alloys classification, while C99750 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is C99750 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
110 to 120
Elastic (Young's, Tensile) Modulus, GPa 210
130
Elongation at Break, % 39
20 to 30
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 88
77 to 82
Shear Modulus, GPa 80
48
Tensile Strength: Ultimate (UTS), MPa 900
450 to 520
Tensile Strength: Yield (Proof), MPa 470
220 to 280

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1420
840
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
23
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 5.3
3.1
Embodied Energy, MJ/kg 73
51
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
190 to 300
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
21
Strength to Weight: Axial, points 32
15 to 18
Strength to Weight: Bending, points 26
16 to 18
Thermal Shock Resistance, points 22
13 to 15

Alloy Composition

Aluminum (Al), % 0
0.25 to 3.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
55 to 61
Iron (Fe), % 43.2 to 51.6
0 to 1.0
Lead (Pb), % 0
0.5 to 2.5
Manganese (Mn), % 5.0 to 7.0
17 to 23
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0 to 5.0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
17 to 23
Residuals, % 0
0 to 0.3