MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. S41050 Stainless Steel

Both S34565 stainless steel and S41050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 61% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 39
25
Fatigue Strength, MPa 400
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 88
77
Shear Modulus, GPa 80
76
Shear Strength, MPa 610
300
Tensile Strength: Ultimate (UTS), MPa 900
470
Tensile Strength: Yield (Proof), MPa 470
230

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 450
390
Maximum Temperature: Mechanical, °C 1100
720
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
27
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.9
Embodied Energy, MJ/kg 73
27
Embodied Water, L/kg 210
97

Common Calculations

PREN (Pitting Resistance) 47
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
98
Resilience: Unit (Modulus of Resilience), kJ/m3 540
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 3.2
7.2
Thermal Shock Resistance, points 22
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 23 to 25
10.5 to 12.5
Iron (Fe), % 43.2 to 51.6
84.2 to 88.9
Manganese (Mn), % 5.0 to 7.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 18
0.6 to 1.1
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0.4 to 0.6
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030