MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. EN 1.0625 Steel

Both S35045 stainless steel and EN 1.0625 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is EN 1.0625 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
25
Fatigue Strength, MPa 170
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 540
560
Tensile Strength: Yield (Proof), MPa 190
320

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
47
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.2
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.8
1.5
Embodied Energy, MJ/kg 83
20
Embodied Water, L/kg 230
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 94
270
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.060 to 0.1
0.18 to 0.25
Chromium (Cr), % 25 to 29
0 to 0.3
Copper (Cu), % 0 to 0.75
0 to 0.3
Iron (Fe), % 29.4 to 42.6
96.6 to 99.02
Manganese (Mn), % 0 to 1.5
0.8 to 1.4
Molybdenum (Mo), % 0
0 to 0.12
Nickel (Ni), % 32 to 37
0 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0.15 to 0.6
0
Vanadium (V), % 0
0 to 0.030