MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. EN 1.4542 Stainless Steel

Both S35045 stainless steel and EN 1.4542 stainless steel are iron alloys. They have 58% of their average alloy composition in common.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
5.7 to 20
Fatigue Strength, MPa 170
370 to 640
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 370
550 to 860
Tensile Strength: Ultimate (UTS), MPa 540
880 to 1470
Tensile Strength: Yield (Proof), MPa 190
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 520
440
Maximum Temperature: Mechanical, °C 1100
860
Melting Completion (Liquidus), °C 1390
1430
Melting Onset (Solidus), °C 1340
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.8
2.7
Embodied Energy, MJ/kg 83
39
Embodied Water, L/kg 230
130

Common Calculations

PREN (Pitting Resistance) 27
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 94
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
31 to 52
Strength to Weight: Bending, points 19
26 to 37
Thermal Diffusivity, mm2/s 3.2
4.3
Thermal Shock Resistance, points 12
29 to 49

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.060 to 0.1
0 to 0.070
Chromium (Cr), % 25 to 29
15 to 17
Copper (Cu), % 0 to 0.75
3.0 to 5.0
Iron (Fe), % 29.4 to 42.6
69.6 to 79
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 32 to 37
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.6
0