MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. EN 1.4903 Stainless Steel

Both S35045 stainless steel and EN 1.4903 stainless steel are iron alloys. They have 46% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
20 to 21
Fatigue Strength, MPa 170
320 to 330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 370
420
Tensile Strength: Ultimate (UTS), MPa 540
670 to 680
Tensile Strength: Yield (Proof), MPa 190
500

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 520
380
Maximum Temperature: Mechanical, °C 1100
650
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
7.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.8
2.6
Embodied Energy, MJ/kg 83
36
Embodied Water, L/kg 230
88

Common Calculations

PREN (Pitting Resistance) 27
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 94
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 3.2
7.0
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.040
Carbon (C), % 0.060 to 0.1
0.080 to 0.12
Chromium (Cr), % 25 to 29
8.0 to 9.5
Copper (Cu), % 0 to 0.75
0 to 0.3
Iron (Fe), % 29.4 to 42.6
87.1 to 90.5
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 32 to 37
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.6
0
Vanadium (V), % 0
0.18 to 0.25