MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. SAE-AISI 4037 Steel

Both S35045 stainless steel and SAE-AISI 4037 steel are iron alloys. Both are furnished in the annealed condition. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is SAE-AISI 4037 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
23
Fatigue Strength, MPa 170
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 370
340
Tensile Strength: Ultimate (UTS), MPa 540
540
Tensile Strength: Yield (Proof), MPa 190
290

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
48
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.8
1.5
Embodied Energy, MJ/kg 83
19
Embodied Water, L/kg 230
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
100
Resilience: Unit (Modulus of Resilience), kJ/m3 94
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.060 to 0.1
0.35 to 0.4
Chromium (Cr), % 25 to 29
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 29.4 to 42.6
98 to 98.6
Manganese (Mn), % 0 to 1.5
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 32 to 37
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040
Titanium (Ti), % 0.15 to 0.6
0