MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. C93700 Bronze

S35045 stainless steel belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 39
20
Fatigue Strength, MPa 170
90
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 78
37
Tensile Strength: Ultimate (UTS), MPa 540
240
Tensile Strength: Yield (Proof), MPa 190
130

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1390
930
Melting Onset (Solidus), °C 1340
760
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 12
47
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 34
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.8
3.5
Embodied Energy, MJ/kg 83
57
Embodied Water, L/kg 230
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
40
Resilience: Unit (Modulus of Resilience), kJ/m3 94
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 19
7.5
Strength to Weight: Bending, points 19
9.6
Thermal Diffusivity, mm2/s 3.2
15
Thermal Shock Resistance, points 12
9.4

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.060 to 0.1
0
Chromium (Cr), % 25 to 29
0
Copper (Cu), % 0 to 0.75
78 to 82
Iron (Fe), % 29.4 to 42.6
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 32 to 37
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0