MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. N08330 Stainless Steel

Both S35045 stainless steel and N08330 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
34
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 370
360
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Corrosion, °C 520
420
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1390
1390
Melting Onset (Solidus), °C 1340
1340
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
32
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.8
5.4
Embodied Energy, MJ/kg 83
77
Embodied Water, L/kg 230
190

Common Calculations

PREN (Pitting Resistance) 27
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
150
Resilience: Unit (Modulus of Resilience), kJ/m3 94
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 3.2
3.1
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.060 to 0.1
0 to 0.080
Chromium (Cr), % 25 to 29
17 to 20
Copper (Cu), % 0 to 0.75
0 to 1.0
Iron (Fe), % 29.4 to 42.6
38.3 to 48.3
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 32 to 37
34 to 37
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0.75 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.6
0