MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. S31060 Stainless Steel

Both S35045 stainless steel and S31060 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
46
Fatigue Strength, MPa 170
290
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
78
Shear Strength, MPa 370
480
Tensile Strength: Ultimate (UTS), MPa 540
680
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 520
440
Maximum Temperature: Mechanical, °C 1100
1080
Melting Completion (Liquidus), °C 1390
1420
Melting Onset (Solidus), °C 1340
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
18
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.8
3.4
Embodied Energy, MJ/kg 83
48
Embodied Water, L/kg 230
170

Common Calculations

PREN (Pitting Resistance) 27
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
260
Resilience: Unit (Modulus of Resilience), kJ/m3 94
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 3.2
4.0
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.060 to 0.1
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 25 to 29
22 to 24
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 29.4 to 42.6
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 32 to 37
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.6
0