MakeItFrom.com
Menu (ESC)

S35115 Stainless Steel vs. AISI 347LN Stainless Steel

Both S35115 stainless steel and AISI 347LN stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S35115 stainless steel and the bottom bar is AISI 347LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
40
Fatigue Strength, MPa 280
200
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 86
79
Shear Modulus, GPa 79
77
Shear Strength, MPa 470
400
Tensile Strength: Ultimate (UTS), MPa 670
590
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
460
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
3.5
Embodied Energy, MJ/kg 67
49
Embodied Water, L/kg 190
150

Common Calculations

PREN (Pitting Resistance) 35
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
190
Resilience: Unit (Modulus of Resilience), kJ/m3 240
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 3.9
4.1
Thermal Shock Resistance, points 15
13

Alloy Composition

Carbon (C), % 0 to 0.030
0.0050 to 0.020
Chromium (Cr), % 23 to 25
17 to 19
Iron (Fe), % 47.6 to 55.8
64.3 to 73.7
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 19 to 22
9.0 to 13
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0.2 to 0.3
0.060 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030