MakeItFrom.com
Menu (ESC)

S35115 Stainless Steel vs. ASTM Grade LCB Steel

Both S35115 stainless steel and ASTM grade LCB steel are iron alloys. They have 53% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S35115 stainless steel and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
27
Fatigue Strength, MPa 280
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
72
Tensile Strength: Ultimate (UTS), MPa 670
540
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 67
18
Embodied Water, L/kg 190
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 3.9
14
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.3
Chromium (Cr), % 23 to 25
0
Iron (Fe), % 47.6 to 55.8
97 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 19 to 22
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.045
Residuals, % 0
0 to 1.0