MakeItFrom.com
Menu (ESC)

S35115 Stainless Steel vs. S40930 Stainless Steel

Both S35115 stainless steel and S40930 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 64% of their average alloy composition in common.

For each property being compared, the top bar is S35115 stainless steel and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
23
Fatigue Strength, MPa 280
130
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 86
76
Shear Modulus, GPa 79
75
Shear Strength, MPa 470
270
Tensile Strength: Ultimate (UTS), MPa 670
430
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
460
Maximum Temperature: Mechanical, °C 1100
710
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 26
8.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
2.3
Embodied Energy, MJ/kg 67
32
Embodied Water, L/kg 190
94

Common Calculations

PREN (Pitting Resistance) 35
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
80
Resilience: Unit (Modulus of Resilience), kJ/m3 240
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 3.9
6.7
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 23 to 25
10.5 to 11.7
Iron (Fe), % 47.6 to 55.8
84.7 to 89.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 19 to 22
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.050 to 0.2