MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. 6025 Aluminum

S35125 stainless steel belongs to the iron alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
2.8 to 10
Fatigue Strength, MPa 200
67 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 370
110 to 140
Tensile Strength: Ultimate (UTS), MPa 540
190 to 240
Tensile Strength: Yield (Proof), MPa 230
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 6.4
8.5
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 210
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 140
33 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
19 to 24
Strength to Weight: Bending, points 18
26 to 31
Thermal Diffusivity, mm2/s 3.1
54
Thermal Shock Resistance, points 12
8.2 to 10

Alloy Composition

Aluminum (Al), % 0
91.7 to 96.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0 to 0.2
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 36.2 to 45.8
0 to 0.7
Magnesium (Mg), % 0
2.1 to 3.0
Manganese (Mn), % 1.0 to 1.5
0.6 to 1.4
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 31 to 35
0
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.5
0.8 to 1.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.15