MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. 6261 Aluminum

S35125 stainless steel belongs to the iron alloys classification, while 6261 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is 6261 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 39
9.0 to 16
Fatigue Strength, MPa 200
60 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 370
90 to 180
Tensile Strength: Ultimate (UTS), MPa 540
150 to 300
Tensile Strength: Yield (Proof), MPa 230
100 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
180
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
48
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
160

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.4
8.3
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
21 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
77 to 500
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
15 to 31
Strength to Weight: Bending, points 18
23 to 37
Thermal Diffusivity, mm2/s 3.1
75
Thermal Shock Resistance, points 12
6.5 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 98.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 36.2 to 45.8
0 to 0.4
Magnesium (Mg), % 0
0.7 to 1.0
Manganese (Mn), % 1.0 to 1.5
0.2 to 0.35
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 31 to 35
0
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.5
0.4 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15